

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 137

A Constraint Identification Method for Predicate Node

Identification in Clustered Xml Documents

1B.A. Bodinga, 1A. Roko, 1A.B. Muhammad, 2I. Saidu
1Department of Computer Science, Usmanu Danfodiyo University, Sokoto-Nigeria

2Department of ICT, Usmanu Danfodiyo University, Sokoto-Nigeria

*Corresponding Author: bello.bodinga@ududok.edu.ng

DOI: 10.56201/wjimt.v8.no4.2024.pg137.151

Abstract

A large number of documents are now represented and stored using an XML document structure

on the web. These documents may emanate from the same source (Homogeneous) or different

sources (Heterogeneous). This make it challenging as how these documents can be managed and

retrieved. The existing systems returns irrelevant predicates. The predicate node identification

method employed on the search systems use only a simple constraint. To improve the effectiveness

of XML retrieval, an effective constraints Identification Algorithm (E_CIA) is developed to identify

relevant predicates. The E_CIA uses Constraints Operator Generator (COG) to identify

constraints to be imposed to generate most relevant predicate node to improve the effectiveness of

the retrieval process. Experiments have been conducted to evaluate the performance of the

proposed E_CIA. The experimental results have shown that the proposed E_CIA outperforms

StruX and StruXPlus in terms of precision.

Keywords: XML retrieval, Constraint Identification, Predicate node, Constraint Operator

Generator

1. Introduction

To retrieved data stored in XML document, query languages are developed. Using query

language, a user can compose his query to retrieve data from XML documents. Such queries are

called structured queries. Formal languages or structured query languages such as XPath or

XQuery are used to query the collection of XML documents to retrieve relevant parts of the

XML document ([8], [10]). XQuery is a functional language that is used to retrieve information

stored in XML format. It is similar to SQL in relational database. XQuery has an expression

called a FLWOR (for, let, where, order by, and return) expression, used to query XML

documents and return different parts of the document. For example, Figure 1 below is

XQuery’s FLWOR expression that returns ‘movies’ where ‘writer’ contains ‘Bralver Bob’.

This is similar to an SQL select statement where movies is a table (called entity in XML

retrieval) and the where clause is writer = ‘Bralver, Bob’ is a filter condition, which we called

constraint condition, in this research.

http://www.iiardjournals.org/
mailto:bello.bodinga@ududok.edu.ng
https://doi.org/10.56201/ijssmr.v8.no1.2022.pg32.40

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 138

Figure 1: A XQuery Based on single condition

In the preceding query, the ‘for’ clause binds the variable $c to each movie element and the

‘where’ clause filters out bindings of the variable $c for which the writer element contain the value

‘Bralver, Bob’. The return clause produces a result for each binding of $c.

In XML retrieval community, the ‘movies’ node is called an entity node and ‘writer’ node a

predicate node [3]. Predicate node is like a field of table in relational database and ‘Bralver,

Bob’ is one of its content. Because an entity node is more informative than the predicate node,

entity nodes are often returned as query results in XML retrieval [1]. Since, several entity

nodes can be returned as answer to a query even including irrelevant nodes, the predicate nodes

and their contents are then used to filter out the irrelevant entity nodes. For example, writer =

‘Bralver, Bob’ is a simple constraint condition which is used to filter out irrelevant nodes.

However, the constraint condition can be compound condition connected with AND/OR

constraint operators [4]. For example, the query in Figure 1 can be re-written as follows:

Figure 2: XQuery based on compound conditions

The query in Figure 2 (a) returns ‘movie’ node based on writer and director. All movie nodes that

satisfy the filter conditions are returned and the one in Figure 2 (b) returns movie node based on

writer or director.

As noted by [4], filtering based on two constraints could return more relevant results. These make

XQuery queries to be effective. However, for most users formulating XQuery queries prove to

be difficult even for experienced users [7]. Because it requires the user to have formal knowledge

of the query language and knowledge of the underlying XML document schema. Further,

determining which logical operator (AND/OR) to be used to form compound constraints prove

to be challenging [4]. This prompted the development of system that automatically generate

queries developed ([6], [9], [11]). For example, the systems allow a user to enter a keyword query

and it automatically converts the keyword query to XQuery query or another structured query.

These systems are called Query Structuring System (QSS) and their process of conversion consists

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 139

of three steps: how to represent user queries, identifying entity and predicate nodes to improve

keyword search. Several predicate identification algorithms are developed ([6], [9]). Existing

Predicate Node Identification Methods utilizes only a single constraint condition which make them

return many irrelevant predicate nodes.

This paper presents our constraint identification method for an effective Predicate Node

Identification. The method consists of Constraint Operator Generator and Effective Constraint

Identification Algorithm. The rest of this paper is organized as follow: section 2 presents related

works, section 3 presents preliminaries, section 4 presents the proposed E_CIA, sections 5 and 6

presents Experimental results and lastly the paper concludes in section 7.

2. Related works

In order to accommodate the notion of more relevant elements and likely relevant elements caused

by keyword query and the need to develop systems that are both efficient and effective prompted

the development of Query structuring systems. In this section, two leading works on Predicate

Node Identification which were benchmarked in this paper are presented by highlighting the

operation, strength and weaknesses as follows:

StruX [6] does not dictate the way a user pose his/her queries. Given a keyword query, StruX

generates a sequence of segments based on the keywords in the query, where a segment consists

of one or more query keywords. Pairs of segments are then combined; each segment combination

is labelled with elements from the XML data. This approach is impractical to be used for an

environment where DTD is not part of the XML document because entity node in the target XML

documents are computed based on the heuristics applied on the DTD. Another drawback to StruX

is that the segmentation strategy employed does not consider the fact that a group of consecutive

keywords represent a single named entity and therefore need not to be splitted. This idea was

backed by [5], where a new approach called in-doubt-without approach was developed with the

basic idea that, in cases of doubt, it is often better to (partially) leave queries without any

segmentation. In addition, its ranking function assigns score to individual generated structured

queries based on statistics of the keywords in the XML element node that form the query only and

this make the system return lower quality result in terms of query relevance.

To address the drawbacks in StruX, the StruXPlus [9] was proposed. First, an entity-based query

segmentation method (EBQS) that return correct query interpretation is introduced. Secondly, a

segment term proximity scorer (STPS) is proposed to resolve keyword query ambiguity. Then an

effective predicate Identification algorithm to infer relevant predicates is developed. However, the

formula used to compute relevant predicates fails to be conscious of the semantic relatedness

between terms. In addition, a simple constraint is employed which make it return many irrelevant

predicates.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 140

3. Preliminaries

This section presents building blocks for the proposed method. The section first introduces query

segments and predicates in section 3.1, then explores the information need from a keyword query

in section 3.2.

3.1 Segments and Predicates

Query Segmentation is one of the critical components for understanding users' search intention in

Information Retrieval process [8]. This involves grouping tokens in the keyword query into

meaningful phrases (segments) which help tasks such as search relevance and keyword query

understanding.

XML keyword Search systems retrieves high quality and most relevant results when they are able

to identify the important phrases in the keyword query which need to be kept together for quality

results. One way to achieve this is for the user to be explicit about the phrases by adding quotes

around the segments of the keywords query to indicate phrases. But this is not the pattern in the

real-world search logs. Users expect the keyword search system to infer and understand these

phrases. This ends up lowering the precision in most cases where the phrase as a whole is important

to be kept together during retrieval process in IMDB dataset like movie name, song title, brands

etc. For example, Consider a user’s query q= ‘XML Retrieval Mounia Lalmas’. The user is looking

for mainly ‘XML Retrieval document authored by Mounia Lalmas’. The underlying keyword

search system needs to know that the query is for ‘XML Retrieval’ and specifically written by

‘Mounia Lalmas’ as an additional feature of the document. The search experience is different if a

user searches with quotes around the segments -"XML" "Retrieval" "Mounia Lalmas" compared

to the unquoted query. If the query is treated as a bag of words, the results might end up being less

precise. In the keyword query ‘XML Retrieval Mounia Lalmas’, the results are far from being

accurate if we show the user items which match ‘XML Retrieval Mounia Lalmas’ with ‘XML

Mounia Lalmas Retrieval’. Order plays a vital role in query segmentation which is lost in a bag of

words model. A keyword query 𝑞 = { 𝑘1, 𝑘, … , 𝑘} can be segmented to form a segment list with

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘} and each segment 𝑠𝑖 = { 𝑡1, 𝑡2, … , 𝑡𝑛} where 𝑡𝑖 is a query term or a sequence

of query terms that describe an entity. If 𝐴 = {𝑎1, 𝑎2 , … , 𝑎𝑚} is the schema, with 𝑎𝑖 as an attribute

of the XML document in question, a segment-attribute combination can be 𝑎1 = 𝑠1, 𝑎1 = 𝑠3,
𝑎3 = 𝑠1, …. Each of this combination is called a predicate according to some guidelines adopted

from [1]. Entity nodes are used as the user search intention: target node and predicate node.

Predicate node and entity node are then use to generate a set of structured queries [1]. The

predicates are nodes that restrict the type of entity (search-for) nodes to be returned, also called

search-via nodes.

Approaches in StruX [6] and StruXPlus [9] treated keyword query just as a set of keywords.

However, in this research, XSeek [7] classification of keyword queries is adopted by grouping

keywords in a query into two categories: (i) if a keyword k matches the value of a node or it

matches the label of a node that has got a descendant matching another keyword, then k species a

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 141

predicate, corresponding to the WHERE clause in XQuery; (ii) otherwise, it is treated as a return

node, corresponding to the RETURN clause in XQuery.

For example, consider a query Q= {Monsieur Vincent Cloche Maurice} on IMDB dataset which

comprises of all predicates and each keyword is a predicate. We observe that there are relations

between keywords in the query and usually the keywords can be combined together to form a

predicate or return node. The query Q can be expressed as two predicates (:Cloche Maurice and

title:\ Monsieur Vincent) and a return node (movie).

3.2 Exploring the Information Needs in XML Queries

In this section, we explore information need from a keyword query submitted by the user. We

consider a user query as a target [11] which represent the piece of information the user is seeking

for. As noted by [4], the target consists of content needs and the concept needs. The content needs

(CTN) indicates the actual text the user is seeking for. For example, in the Xquery query in Figure

1, the content need is movies indicating that the user will like to see information related to movies

written by ‘Bralver, Bob’ Which is a predicate node. The concept needs (CPN) includes the

constraint keywords (CK) used to filter the relevant content needs (CTN) to narrow the result to

be returned to the user and the constraint operator (COp) as shown in Figure 3. A compound

constraint group element has one or more constraint elements (to indicate where disjunctive or

otherwise) which consist of concept element, C, and a keyword element, K. The concept of

constraint is not mandatory. In the case when the concept is not specified, its value is null. A

compound constraint group element has a logical operator as its attribute. The logical operator

attribute can either have ‘OR’ or ‘AND’ as its value, to indicate where its constraint elements are

disjunctive or conjunctive.

The main idea behind this proposed method is to separate the CTN from CPN during query

representation process. Our contribution in this work is introduction of logical constraint concept

to filter out irrelevant nodes thereby improving precision.

Figure 3: An Explored XML Information Need derived from XQuery in Figure 1

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 142

Different from StruXPlus, the proposed solution provides a constraint generator method to

augment the Effective Predicate Identification. For example, in the XQuery query reformulated in

Figure 2(a), logical operator AND is used to create a very narrow search on movies written by

‘Braiver, Bob’ and directed by ‘Pintoff, Ernest’. User search intention consists of two types of

structural constraints [9]: where to look (i.e. predicates) and what to return (i.e. return elements

or entity nodes). Given a user query q consisting of n keywords, where 𝑞 = {𝑘1, 𝑘2, … , 𝑘𝑛}, for

example a query to find movies written by ‘Bralver, Bob’ presented in the XQuery in Figure 1.

The user information need is explored as presented in Figure 3 above.

1 3.3 Index Construction

This section describes the index construction. To construct this index, MariaDB database is created

with four tables to store the index. This is what distinguishes our index with [9]. The database is

shown in Figure 4 and the primary keys of the tables are shown underlined. The MariaDB database

is compatible with popular MySQL database by adding support to more storage engines and fixing

storage engines limitation.

Figure 4: The Index structure

The process of indexing is done as follows:

For each cluster in clusters, for each document D in cluster, the indexer first creates and returns a

tree-like representation of the document. Each element in the XML document is represented as a

node in the tree. While creating the tree, the indexer also allocates deweyId to each node in the

document. Dewey Id is a sequence of digits that uniquely identify an XML node. The tree is

traversed in pre-order and the following information are collected for each document D and for

each node n in D visited:

i. Store the document ID (docId), cluster ID (clustId) and document name in the

document table in Figure 4.

ii. Store the prefix path (prefixPath) of n as its node type in the nodeTb table in Figure 4.

Each row in the table consists of the node's name (epath), nodes’ number of children

(noOfchilds), and node Id (nId), which is used to identify a node.

iii. In case n is a leaf node, for every term (trm) in n, a record is created in the node index

table in Figure 4. This table is similar to a posting list. Each row in the table stores a

detail of a node with respect to a particular trm in the node. A row is made up of the

nId, the trm, the frequency (freq) of trm in the node, position (pos) of the term in the

node, the NEC of the term trm (category). Also, in the row, are the nodes' dewId and

the docId. The docId is used to identify in which document the XML node belongs.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 143

4. Proposed ECIA

In this section, ECIA that is an improvement on the EPIA [9] is presented. The section is divided

into two: firstly, the shortcomings of the EPIA [9] and its predecessor the PIA [6] are presented in

section 4.1. then the solution to the shortcomings are presented in section 4.2

4.1 Limitations of PIA and EPIA

Given a user keyword query, StruX [6] split the user query keywords into sequence of segments,

where each segment consists of a query keyword or a sequence of keywords. In this case, the

system ignores the fact that a query keyword can appear in different parts of an XML document

having different semantics. It considers a query just as a sequence of keywords not as a sequence

of semantically related terms. This problem causes the existing systems to return irrelevant

predicate nodes from XML data. As a result, StruXplus [9] developed entity-based query

segmentation (EBQS) method which first interprets a user query as a list of keywords and/or

named entities to resolve ambiguity. Then, segment terms proximity scorer (STPS) that assigns

relevance scores to XML fragments that contains query keywords is proposed. Fragments

containing the keywords as interpreted by EBQS are assigned higher scores. Finally, an effective

predicate identification algorithm (EPIA) which uses EBQS and STPS to return relevant predicates

is introduced. The system performance is low because it uses simple constraint condition to filter

out entity nodes. This causes the system to return large number of irrelevant entity nodes.

4.2 Proposed solutions to EPIA problems

To enhance the performance of the system, we proposed an effective constraint identification

method. The method consists of two algorithms: First, the XML documents collection need to be

clustered to group similar documents in to clusters. The WEClusterX method developed in the

previous chapter is employed. Using the clusters returned by WEClusterX method, we compute

AND/OR operator and use them to compose query with complex constraints. Complex queries are

queries whose conditions are connected with AND/OR. This algorithm, which we called

constraint_operator_generator (COG) aimed to augment the predicate identification method with

correct logical constraint operator(s) to help in query constraint formulation is presented. The

main motive behind the introduction of the COG is to group the constraints that belong to the same

predicate node. Secondly, an Effective Constraints Identification Algorithm (ECIA) is developed.

ECIA accepts the list of segments (segments), clusters (as returned by WEClusterX method in the

previous chapter), constraint operator (as computed by COG) as input and produces list of

predicates (ListPred) as output.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 144

Constraint Operator Generator Algorithm

In this subsection, a constraint operator generator algorithm is developed. The pseudocode is

shown in algorithm 1

Line 1 uses the clustering method proposed in [2] to cluster the dataset. On line 3, it calls the

predications (segments, dataset) method which using query segments and dataset extract relevant

predicates from the dataset that are to be returned to the user. Lines 3-9 check for every predicate

in the list of predicates and if it finds the predicate in the cluster update list to True. Line 7 applies

the python function all and if all are, then return “AND”. Line 9 break and 10 return the otherwise

“OR”.

Effective Constraint Identification Algorithm

This section describes the proposed Constraint Identification Algorithm which helps filter out

irrelevant predicate nodes. This algorithm takes the XML document (dataset), user query (qry),

list of predicates (ListPred) and segments as input and produce logical constraints as output. This

method is based on the intuition that a relevant predicate is a node that contains at least one segment

in close proximity [9].

Intuitively, in a relevant document, query terms appear relatively close to each other and not in

completely unrelated parts of the document [8]. Adopting this intuition to XML documents, in this

study, the proximity of query terms is calculated as follows:

 𝑠𝑡𝑝(𝑥, 𝑑) = √∑ (𝑥𝑖 − 𝑎𝑣𝑒)2𝑛
𝑖=1 𝑛⁄ 1

where x is a list of query term positions within an XML element e, 𝑥𝑖 represents a term position

in e, ave is the mean of the query term positions, and n is number of query terms used.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 145

stp(x, d) computes how scattered the terms in a query are within an XML leaf element. A small

value of stp(x, d) means the query keywords are clustered together, and a large value indicates the

query keywords are widely separated. The introduced stp(x, d) has the following properties:

• Is always non-negative. Also, it is defined regardless of whether 𝑥1 − 𝑥2 > 0 or 𝑥1 −
𝑥2 < 0. This property is desirable since negative scores are not used.

• Becomes higher as 𝑥1 − 𝑥2 increases and vice versa; i.e., it rewards term proximity

(since the score is inversely proportional to this quantity).

• Becomes higher if 𝑥1𝑎𝑛𝑑 𝑥2 are far apart i.e. if 𝑥1 − 𝑥2 < 0 and vice versa. This

property indicates that 𝑠𝑡𝑑(𝑥, 𝑑) rewards correct term ordering.

In this method, equation (2) is adopted from [9] to compute relevant predicates for a given segment.

𝑠𝑐𝑜𝑟𝑒(𝑛, 𝑠) = 𝑝𝑠
𝑛 𝑙𝑜𝑔𝑒 (1 + ∑ 𝑓𝑛 ,𝑘

𝑘 ∈𝑠

) (2)

Where n is a predicate node, s is a segment and k is a keyword contained in s. The 𝑃𝑠
𝑛 is a segment

proximity scorer of segment s in node n. The first multiplier 𝑃𝑠
𝑛 in equation 2 computes XML

nodes containing at least one of the keywords in s. The second multiplier (SPS) rewards nodes

having the segment keywords in close in close proximity and in the order, they appear in segment

s. As the terms are in close proximity with each other and in the same order they appear in s.

The 𝑝𝑠
𝑛 is the segment proximity score of segment s in node n and is computed using equation 3.

From Equation (2), if the value of 𝑠𝑐𝑜𝑟𝑒(𝑛, 𝑠) is non-negative, then n and s are relevant.

𝑝𝑠
𝑛 =

1

√ ∑ (𝑝𝑜𝑠_𝑖 − 𝑎𝑣𝑒)2𝑛
𝑡=1

𝑡
⁄

 (3)

where t is the number of keywords in segment s, Pos_i is the position of keyword i in s, and

ave is the mean of the position of the first and the last keywords in s, which is computed using

Equation (4) with β = 1.01, which is little bit greater than 1 to ensure that query term 𝑡𝑖 is

clustered around 𝑡𝑖+1in segment s. 𝑝𝑠
𝑛 score determines how the terms in the segment s are

scattered within the node. The closer the terms within a node, the higher is the score. By

including the notation of term proximity, the node having the segment keywords closer to each

other gets bigger.

 ave =
(β2+1) . Pti , e

 . Pti+1 , e

β2 . Pti, e
+ Pti+1, e

 (4)

where 𝑃𝑡𝑖,𝑒
 represents position of term 𝑡𝑖 in e while 𝑃𝑡𝑖+1,𝑒

 represents position of term 𝑡𝑖+1 in e.

The following example demonstrates how it works. Consider a query ‘movie 2004 Bralver Bob '

issued on IMDB dataset, and the query is intended to search for a movie whose writer ' Bralver

‘and year ‘2004' and one of the actors is ' Bob’. Using Equation (2), E_CIA returns the following

three predicates each with its scores.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 146

Figure 5: Predicates and scores

The second predicates got the highest score because there are more /movies/movie/writer nodes in

the IMDB that contain the segment keywords than the /movies/movie/actor nodes. But the user

search intention does not include /movies/movie/actor node.

The pseudocode of the E_CIA is shown in Algorithm 2. The algorithm works as follows: Line 1

retrieves all the nodes in the XML document collection using getAllNodeTYPE () and for each

node, its relevant segments are computed from the given list of segments on lines 2-10. Line 2

iterates through all nodes in allnodesType and a list of relevant segments is computed for each

segment s. The method sets Rsegments to empty since no any relevant segment yet found. In line

4, the method considers a segment s and compute a score for that segment in respect to n in line 5.

Line 6 checks if the score of the segment s is greater than zero and update Rsegments in line 7,

otherwise it iterates back to line 4 Line 8 selects the best segments while lines 9-10 first check if

the list of segments is non-empty then it generates a list of related node/segment pairs called

predicates. This process continues until all the nodes are considered. Finally, line 11 selects the

best predicates and store the result in list of predicates (ListPred). line 12 call the

generate_AND_OR to generate all the logical constraint operators and returns the list of best

predicates as the answer.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 147

5. Experiments and Evaluation

To evaluate the performance of the proposed COG and E_CIA algorithms, we designed and

performed a comprehensive set of experiments on real datasets. Our approach is compared against

the state-of-art proposals of StruX [5] and StruXPlus [8]. The algorithms were used in StruXPlus

and a new version called StruX++ is presented. For the conduct of experiments, Python

programming language is used for the implementation on windows 10 professional 64-bit

operating system. Niagara and DBLP datasets were used to evaluate the method. Experiments were

conducted to investigate performance of the proposed StruX++ using an effective constraint

identification method. We compare our proposed method against StruX [5] and StruXPlus [8] in

order to test the effectiveness of our constraint operator generator (COG) algorithm along with the

utilization of the previously proposed E_CIA using queries and relevant judgements. The queries

and relevant judgments (which we called returned node) are obtained as follows: Twenty-five (25)

keyword queries are randomly selected as done in [8] and a survey involving forty-five (45)

students (both undergraduate and postgraduate) is conducted. In the survey, the students were

asked to write the target XML predicate nodes that would be returned by each query. The survey

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 148

result is summarized and the 10 queries where more than 70% of the participants agree on the same

target node are selected. These queries are indicated on column 2 and their corresponding predicate

nodes (i.e. relevant judgments) on column 3 of both table 1 and 2 respectively. We chose StruX

and StruXPlus because they are the most recently proposed predicate identification methods in

XML retrieval. Niagara and DBLP datasets are used for the evaluation of StruX++. Performance

evaluation results are presented using tables and in charts. Evaluation result on Niagara dataset is

indicated in table 1 and in figure 6 while on DBLP dataset, it is indicated in table 2.and figure 7

respectively.

Table 1: Query evaluation result on Niagara dataset

Query

Id

Query Returned node StruX StruXPlus StruX++

QN1 StoneBreaker

Eugenia

Club Club Club Club

QN2 Addison Wesley

problem solving

with C++

Publisher Title Author Publisher

QN3 Nosperatu, eine

Symphonie des

Grauens

Movie Movie Movie Movie

QN4 Casablanca Movie Movie Movie Movie

QN5 Goet Graefe Rule

Based query

optimization in

extensible database

systems

Title Author Title Title

QN6 City Lights Movie Movie Movie Movie

QN7 Crafting a compiler

with C

Book Book Book Book

QN8 Nearman Ronald ClubMember ClubMember ClubMember ClubMember

QN9 1234 Yellowstone

drive BeaVerton

Address Address Address Address

QN10 Raghu Ramakri

Ishnan

Person Person Person Person

Table 2: Query evaluation result on DBLP dataset

Query

Id Query

Returned

nodes

StruX StruXPlus StruX++

QD1

 53 ACM Computing

Arbitrary functions of

encrypted data

Issue Issue Issue Issue

QD2 PIM Meets web 2.0 Conference Conference Conference Conference

QD3

51 11 Jim Gray,

astronomer

Issue Issue Issue Issue

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 149

QD4 Alexander Szalay Author Author Author Author

QD5

10 Peter Wood Query

Relaxation in RDF

Issue Issue Issue Issue

QD6 NAA 2008, Lozenetz Conference Conference Conference Conference

QD7 Chen Li 007 Author Author Author Author

QD8

Performance evaluation in

databases

Article Journal Article Article

QD9 Numerical Quandrature Article Articles Article Article

QD10

Roots of the western

tradition

Article Author Author Article

6. Results Analysis and Discussions

All the queries are evaluated and results are shown in Tables 1 and 2 respectively. The first

columns represent the query Id; the second columns represent the search value; the third columns

represent the expected returned nodes. The fourth column represent the set of nodes returned by

the StruX [5] the fifth columns represent the answers (i.e. nodes) returned by the StruXPlus [8];

while the last columns represent the set of nodes returned by the proposed system.

Figure 6: Precision comparison on Niagara Dataset Figure 7: Precision comparison on DBLP

Dataset

Figures 6 and 7 illustrates the precision comparison of the proposed method compared with StruX

and StruXPlus using Niagara and DBLP datasets, respectively. The Figures shows that the

StruX++ achieves better search performance than both the StruX and StruXPlus. Figure 5.6 shows

that StruX++ is able to infer about 100% of the true return nodes while the StruX only 80% and

the StruXPlus returns 90% on Niagara dataset. While Figure 5.7 demonstrates that the proposed

0

0.2

0.4

0.6

0.8

1

1.2

Precision Comparison on
Niagara dataset

StruX StruXPlus StruX++

0

0.2

0.4

0.6

0.8

1

1.2

Precision Comparison on DBLP
dataset

StruX StruXPlus StuX++

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 150

method infers about 100% of the return nodes and the StruX about 80%, and the StruXPlus obtains

90% on DBLP dataset.

The StruX++ uses the WEClusterX method proposed in Bodinga et al., 2024 and the E_CIA and

COG algorithms which are proposed to provide correct logical constraints resolve polysemous

ambiguity. The algorithms are used in StruXPlus to produce StruX++.

The StruX++ system performs better than the StruX and the StruXPlus systems because the system

returns nodes that contain enough relevant information using its trained set to obtained semantic

relatedness between nodes. This can be attributed to the fact that the proposed StruX++ is a word

embeddings based method and it acquires enough semantic information of the terms used to query

the datasets.

7. Conclusion and future work

This paper presented the proposed StruX++ using an enhanced method to predicate node

identification for XML retrieval in heterogeneous environment. Experiments has been conducted

to evaluate the performance of the proposed system. The results have demonstrated that the

proposed StruX++ system outperforms the compared StruX and StruXPlus in terms the quality of

desired returned nodes. In the future, we intend to develop a dynamic labelling scheme that allows

XML Documents update so that the system can be used in dynamic environment.

REFERENCES

[1] Bao, Z., Lu, J., Ling, T. W., & Chen, B. (2010). Towards an Effective XML Keyword

Search. IEE Transactions On Knowledge And Data Engineering, Vol. 22(8), pp.1077–1092.

[2] Bodinga, A. B., Roko, A., Muhammad, A.B., and Saidu, I. (2024). An Effective XML

 Documents Clustering Method Using Word Embeddings for Heterogeneous Collections.

 International Journal of Computer Science and Mathematical Theory. DOI:

 10.56201/ijcsmt.v10.no2.2024.pg120.140

[3] Fuhr, N., Lalmas, M., & Kazai, G. (2002). INEX: Initiative for the Evaluation of XML

retrieval. In University of Dortmund. article.

[4] Gan, K.H. and Phang, K.K. (2017). A Sematic-Syntax Model for XML Query Construction.

 International Journal of Web Information Systems. Vol. 13(2). doi: 10.1108/IJWIS-

 06-2016-0034.

[5] Hagen, M. Potthast, M., Stein, B. & Brautigam, C. (2012). The power of Naïve query

 segmentation. In the Proceedings of the SIGIR’10 Conference, Geneva, Switzerland.

 Pp. 1-2.

[6] Hummel, F., da Silva, A.S., Moro, M.M., & Laender, A.H.F. (2011). Automatically

 Generating Structured Queries for XML Keyword Search. In S.Geva et.al., (Eds.):

 INEX 2010, lncs 6932,194-205. Springer-Verlag Berling Heldeiberg.

[7] Liu, Z., and Chen, Y. (2007). Identifying meaningful return information for XML keyword

search. In Proceedings of the 2007 ACM SIGMOD international conference on

Management of data. SIGMOD ’07. Pp. 320-329. New York, New York, USA: ACM Press.

http://www.iiardjournals.org/

World Journal of Innovation and Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910
Vol 8. No. 4 2024 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 151

http://doi.org/10.1145/1247480.1247518.

[8] Roko, A., Doraisamy, S., Jantan, A, H. and Azman, A. (2015). Effective Keyword Query

 Structuring using NER for XML Retrieval. International Journal of Web

 Information Systems, vol. 11 (1), pp. 33-53.

[9] Roko, A., Doraisamy, S., and Nakone, B. (2018). Effective Predicate Identification

 Algorithm for XML Retrieval. In proceedings of the Fourth International Conference on

 Information Retrieval and Knowledge Management (CAMP), Kota

 Kinabalu,Malaysia, 2018, pp. 1-5, doi: 10.1109/INFRKM.2018.8464696.

[10] Woodley, A., and Geva, S. (2006). Nlpx at inex 2006. In N. Fuhr, M. Lalmas, & A.

 Trotman (Eds.), Inex, 4518, 302-311. Springer-Verlag Berling Heldeiberg.

[11] Petkova D., Croft W.B., and Diao Y. (2009). Refining Keyword Queries for XML

 Retrieval by Combining Content and Structure. In: Boughanem M., Berrut C.,

 Mothe J., Soule-Dupuy C. (eds) Advances in Information Retrieval. ECIR 2009,

 5478. Springer, Berlin, Heidelberg.

http://www.iiardjournals.org/
http://doi.org/10.1145/1247480.1247518

